
LangGraph Execution Semantics
Concurrent branch specification — no parallel branch execution

Christoph Bussler 11 min read · Just now

LangGraph supports the definition and the execution of graphs composed of nodes
that are connected by directional dependencies. It is a type-instance system where a
graph type is defined and compiled and the compiled graph (type) can be executed
subsequently as often as required (instances).

LangGraph is used for workflow definitions in context of AI use cases, but it is not
limited to AI in practice; LangGraph can be deployed in non-AI use cases as well.

Two nodes A , B with a dependency from node A to node B means that node A is

executed first, then node B — node B depends on the successful execution of

node A . Conditional dependencies between nodes and splits into concurrent

branches are supported as well.

Graphs have a graph scoped data state that is read and write accessible to the nodes
in a graph so that data can be managed by nodes. The state is shared between the
nodes, and this supports (indirect) data communicated between nodes. Each graph
instance has its own data state instance scoped to the graph instance. The data and
state aspect is not further discussed in the following.

10/15/25, 6:47 AM LangGraph Execution Semantics. | by Christoph Bussler | Medium | Medium

https://chbussler.medium.com/langgraph-execution-semantics-c7dd89900ed4 1/19

https://chbussler.medium.com/?source=post_page---byline--c7dd89900ed4---------------------------------------
https://chbussler.medium.com/?source=post_page---byline--c7dd89900ed4---------------------------------------
https://chbussler.medium.com/?source=post_page---byline--c7dd89900ed4---------------------------------------
https://chbussler.medium.com/?source=post_page---byline--c7dd89900ed4---------------------------------------
https://chbussler.medium.com/?source=post_page---byline--c7dd89900ed4---------------------------------------

Concurrent branches in a graph

LangGraphs can have concurrent branches. An example graph specification is as
follows:

In this graph there are two concurrent
branches, node_parallel_1 → node_sequential_1 and node_parallel_2 → node_

sequential_2 or node_sequential_3 . The latter two are conditional: a condition

decides which of node_sequential_2 and node_sequential_3 is executed.

Graphically a conditional branch is depicted as dotted dependencies.

10/15/25, 6:47 AM LangGraph Execution Semantics. | by Christoph Bussler | Medium | Medium

https://chbussler.medium.com/langgraph-execution-semantics-c7dd89900ed4 2/19

The following diagram marks the two concurrent branches.

The two branches are concurrent to each other as no dependencies exist from the
nodes of one branch to the nodes of the other branch. The node node_start has two

outgoing dependencies that implement a concurrent split; the node node_end has

three incoming dependencies indicating that node node_end is only executed after

nodes node_sequential_1 and node_sequential_2 or node_sequential_3 are

completed (node_end it is a join node).

10/15/25, 6:47 AM LangGraph Execution Semantics. | by Christoph Bussler | Medium | Medium

https://chbussler.medium.com/langgraph-execution-semantics-c7dd89900ed4 3/19

I thought initially that the two concurrent branches in the graph type specification
will be processed in parallel during graph instance execution. For example, as soon
as node node_parallel_2 is processed my expectation was that

node node_sequential_2 or node_sequential_3 starts executing immediately, even

if node node_parallel_1 in the other concurrent branch is still executing and not

completed yet.

However, this is not the case: parallel execution of concurrent branches does not take
place in LangGraph.

Execution semantics

During experimentation I realized that the graph is executed based on sets of
activated nodes following the idea behind Pregel (see later in the blog for
references). An activated node is a node where all incoming dependencies are
fulfilled (https://langchain-ai.github.io/langgraph/concepts/pregel/); this is
automatically true for the start node.

The algorithm of node execution is as follows (for all nodes in a single graph
instance): once all activated nodes are determined (first set of activated nodes), those
are executed. Their successful execution might activate further nodes (second set of
activated nodes), until no further nodes are activated; then execution is completed.

For example, if in the case above node node_start is a first set of activated nodes.

When it completes, the second set of activated nodes
is node_parallel_1 and node_parallel_2 . This is determined by the set of outgoing

edges from node_start . Once node_start completes, its outgoing edges activate

the nodes to which the edges are pointing to. If node_parallel_1 is completed, it

fulfills the dependency of node node_sequential_1 ;

10/15/25, 6:47 AM LangGraph Execution Semantics. | by Christoph Bussler | Medium | Medium

https://chbussler.medium.com/langgraph-execution-semantics-c7dd89900ed4 4/19

https://langchain-ai.github.io/langgraph/concepts/pregel/

however, node_sequential_1 is not immediately executed until all currently

activated nodes are completed.

All nodes in the first set of nodes are completed first. Once all nodes in the first set
are completed, the second set of activated nodes is determined: for all nodes in the
graph, which nodes have fulfilled incoming dependencies. Once all activated nodes
are determined, the execution starts with the second set of activated nodes, and all
nodes in that second set are executed. This in turn will create a third set of activated
nodes (which might be empty if all nodes of a graph are completed, or no more
nodes are activated).

In the above example, the second set of activated nodes
is node_parallel_1 and node_parallel_2 . Only once both are executed, the next

set is determined and executed. Even if the dependencies of node_sequential_1 are

fulfilled (only one in the above case), it will not be executed immediately.

If conditional branching is present following a node like node_parallel_2 , it is

evaluated after the execution of the node set that node_parallel_2 is part of. The

outcome of the conditional branch is one or more activated nodes that will belong to
the next set of activated nodes.

Execution of a sample graph

In the above example, node node_start is the start node and the first set of activated

nodes (only one node is in the initial set — in principle more than one start node can
exist in a graph).

In the following figures the dotted rectangle denotes the activated nodes.

10/15/25, 6:47 AM LangGraph Execution Semantics. | by Christoph Bussler | Medium | Medium

https://chbussler.medium.com/langgraph-execution-semantics-c7dd89900ed4 5/19

Once node node_start is completed, the next set of activated nodes is determined:

this is node node_parallel_1 and node node_parallel_2 .

Node node_parallel_1 and node node_parallel_2 form the second set of activated

nodes, and therefore node node_parallel_1 and node node_parallel_2 are

executed.

10/15/25, 6:47 AM LangGraph Execution Semantics. | by Christoph Bussler | Medium | Medium

https://chbussler.medium.com/langgraph-execution-semantics-c7dd89900ed4 6/19

Only after node node_parallel_1 and node node_parallel_2 are completed, the

next, third, set of activated nodes is determined: node node_sequential_1 and either

node node_sequential_2 or node_sequential_3 , depending on the outcome of the

branching condition.

10/15/25, 6:47 AM LangGraph Execution Semantics. | by Christoph Bussler | Medium | Medium

https://chbussler.medium.com/langgraph-execution-semantics-c7dd89900ed4 7/19

Once the third set is completed (aka, node node_sequential_1 and

either node_sequential_2 or node_sequential_3), the last (fourth) set of activated

nodes is determined and executed (only containing the node node_end).

Node node_end is the final node and after node node_end ’s execution the execution

of the entire graph is completed.

10/15/25, 6:47 AM LangGraph Execution Semantics. | by Christoph Bussler | Medium | Medium

https://chbussler.medium.com/langgraph-execution-semantics-c7dd89900ed4 8/19

Observation: no branch parallelism during execution

Once the execution of node node_parallel_1 is completed,

node node_sequential_1 is not immediately executed next as it is not in the same

set of activated nodes as node node_parallel_1 . Instead, the execution of

node node_sequential_1 only starts once the previous set of activated nodes that

contains node node_parallel_1 (its predecessor) has been completed.

Using the graphical representation from above, the dotted rectangle represents a set
of activated nodes, and the dashed rectangles represent concurrent branches. All
nodes within a dotted rectangle (set of activated nodes) are completely executed

10/15/25, 6:47 AM LangGraph Execution Semantics. | by Christoph Bussler | Medium | Medium

https://chbussler.medium.com/langgraph-execution-semantics-c7dd89900ed4 9/19

before the next set of activated nodes starts executing even though nodes might be in
concurrent branches.

As is visible graphically, even though in case of the two concurrent branches the
nodes node_sequential_1 and node_sequential_2 or node_sequential_3 could

immediately start execution based on their dependencies alone, the LangGraph
execution does not implement its execution semantics this way.

Formal LangGraph execution semantics based on Pregel

10/15/25, 6:47 AM LangGraph Execution Semantics. | by Christoph Bussler | Medium | Medium

https://chbussler.medium.com/langgraph-execution-semantics-c7dd89900ed4 10/19

LangGraph execution (https://langchain-ai.github.io/langgraph/concepts/pregel/) is
implemented based on the Pregel algorithm (https://research.google/pubs/pregel-a-
system-for-large-scale-graph-processing/).

The Python classes functions implementing the LangGraph semantics can be found
here: https://langchain-ai.github.io/langgraph/reference/pregel/.

The implemented semantics is straight forward and clear based on the Pregel
algorithm. It does not restrict the expressiveness of graph structures (graph types).
While not discussed in this blog, this also simplifies the data state coordination that
would be more complex in parallel branch execution as different combinations of
access would have to be guarded and to be coordinated in order to implement state
correctness.

An article describing the semantics in more detail is
this: https://medium.com/@maksymilian.pilzys/langgraph-transactions-pregel-
message-passing-and-super-steps-0e101e620f10.

Parallelism of concurrent branches

Is it possible to have parallel execution of concurrent branches?

Nodes in a graph instance can call any function. A function could be calling another
independent graph instance of a different graph type. Since this is independent of the
node’s graph, that independent graph is being executed separately. Two concurrent
nodes can each call an independent graph, and that provides a higher degree of
parallelism as each of the independent graphs is executed independently, aka, in
parallel.

10/15/25, 6:47 AM LangGraph Execution Semantics. | by Christoph Bussler | Medium | Medium

https://chbussler.medium.com/langgraph-execution-semantics-c7dd89900ed4 11/19

https://langchain-ai.github.io/langgraph/concepts/pregel/
https://research.google/pubs/pregel-a-system-for-large-scale-graph-processing/
https://research.google/pubs/pregel-a-system-for-large-scale-graph-processing/
https://langchain-ai.github.io/langgraph/reference/pregel/
https://medium.com/@maksymilian.pilzys/langgraph-transactions-pregel-message-passing-and-super-steps-0e101e620f10
https://medium.com/@maksymilian.pilzys/langgraph-transactions-pregel-message-passing-and-super-steps-0e101e620f10

However, the complexity of state synchronization increases significantly if that has
to take place across independent graph instances. In that case the execution is
parallel as the execution of the node implementation creates an independent instance.
This changes the model to a federation where each of the graph instances has its own
state and no consistency across the various involved graphs by the LangGraph
execution semantics. Any data coordination and consistency must then be
implemented independent of the graph instances, and independent of the assurances
of the LangGraph implementation.

A trade off discussion between the benefit of parallel execution of independent graph
instances and the added complexity of state management has to carefully take place
— at least I would suggest that strongly.

Summary

While LangGraph supports graphs with concurrent branches of nodes, the execution
of nodes in concurrent branches is not independent of each other, aka, parallel.
Instead, LangGraph’s execution semantics is based on the graph-global execution of
activated node sets following the Pregel semantics, one node set after the next node
set, which does not take concurrent branches into consideration.

Appendix: code documentation

The following shows the code documentation from the class Pregel in this GitHub
location: https://github.com/langchain-
ai/langgraph/blob/main/libs/langgraph/langgraph/pregel/main.py.

Appendix: code documentation
The following shows the code documentation from the class Pregel in this GitHub

class Pregel(

10/15/25, 6:47 AM LangGraph Execution Semantics. | by Christoph Bussler | Medium | Medium

https://chbussler.medium.com/langgraph-execution-semantics-c7dd89900ed4 12/19

https://github.com/langchain-ai/langgraph/blob/main/libs/langgraph/langgraph/pregel/main.py
https://github.com/langchain-ai/langgraph/blob/main/libs/langgraph/langgraph/pregel/main.py

 PregelProtocol[StateT, ContextT, InputT, OutputT],
 Generic[StateT, ContextT, InputT, OutputT],
):
 """
 Pregel manages the runtime behavior for LangGraph applications.

 ## Overview

 Pregel combines [**actors**](https://en.wikipedia.org/wiki/Actor_model)
 and **channels** into a single application.
 Actors read data from channels and write data to channels.
 Pregel organizes the execution of the application into multiple steps,
 following the **Pregel Algorithm**/**Bulk Synchronous Parallel** model.

 Each step consists of three phases:

 - **Plan**: Determine which **actors** to execute in this step. For example,
 in the first step, select the **actors** that subscribe to the special
 input channels; in subsequent steps,
 select the **actors** that subscribe to channels updated in the previous
 - **Execution**: Execute all selected **actors** in parallel,
 until all complete, or one fails, or a timeout is reached. During this
 phase, channel updates are invisible to actors until the next step.
 - **Update**: Update the channels with the values written by the **actors**
 in this step.

 Repeat until no **actors** are selected for execution, or a maximum number of
 steps is reached.

 ## Actors

 An **actor** is a `PregelNode`.
 It subscribes to channels, reads data from them, and writes data to them.
 It can be thought of as an **actor** in the Pregel algorithm.
 `PregelNodes` implement LangChain's
 Runnable interface.

 ## Channels

 Channels are used to communicate between actors (`PregelNodes`).
 Each channel has a value type, an update type, and an update function – which

10/15/25, 6:47 AM LangGraph Execution Semantics. | by Christoph Bussler | Medium | Medium

https://chbussler.medium.com/langgraph-execution-semantics-c7dd89900ed4 13/19

 takes a sequence of updates and
 modifies the stored value. Channels can be used to send data from one chain t
 another, or to send data from a chain to itself in a future step. LangGraph
 provides a number of built-in channels:

 ### Basic channels: LastValue and Topic

 - `LastValue`: The default channel, stores the last value sent to the channel
 useful for input and output values, or for sending data from one step to t
 - `Topic`: A configurable PubSub Topic, useful for sending multiple values
 between *actors*, or for accumulating output. Can be configured to dedupli
 values, and/or to accumulate values over the course of multiple steps.

 ### Advanced channels: Context and BinaryOperatorAggregate

 - `Context`: exposes the value of a context manager, managing its lifecycle.
 Useful for accessing external resources that require setup and/or teardown.
 `client = Context(httpx.Client)`
 - `BinaryOperatorAggregate`: stores a persistent value, updated by applying
 a binary operator to the current value and each update
 sent to the channel, useful for computing aggregates over multiple steps.
 `total = BinaryOperatorAggregate(int, operator.add)`

 ## Examples

 Most users will interact with Pregel via a
 [StateGraph (Graph API)][langgraph.graph.StateGraph] or via an
 [entrypoint (Functional API)][langgraph.func.entrypoint].

 However, for **advanced** use cases, Pregel can be used directly. If you're
 not sure whether you need to use Pregel directly, then the answer is probably
 – you should use the Graph API or Functional API instead. These are higher-le
 interfaces that will compile down to Pregel under the hood.

 Here are some examples to give you a sense of how it works:

 Example: Single node application
       ```python
       from langgraph.channels import EphemeralValue
       from langgraph.pregel import Pregel, NodeBuilder

10/15/25, 6:47 AM LangGraph Execution Semantics. | by Christoph Bussler | Medium | Medium

https://chbussler.medium.com/langgraph-execution-semantics-c7dd89900ed4 14/19



       node1 = (
           NodeBuilder().subscribe_only("a")
           .do(lambda x: x + x)
           .write_to("b")
       )

       app = Pregel(
           nodes={"node1": node1},
           channels={
               "a": EphemeralValue(str),
               "b": EphemeralValue(str),
           },
           input_channels=["a"],
           output_channels=["b"],
       )

       app.invoke({"a": "foo"})
       ```

       ```con
       {'b': 'foofoo'}
       ```

 Example: Using multiple nodes and multiple output channels
       ```python
       from langgraph.channels import LastValue, EphemeralValue
       from langgraph.pregel import Pregel, NodeBuilder

       node1 = (
           NodeBuilder().subscribe_only("a")
           .do(lambda x: x + x)
           .write_to("b")
       )

       node2 = (
           NodeBuilder().subscribe_to("b")
           .do(lambda x: x["b"] + x["b"])
           .write_to("c")
       )

10/15/25, 6:47 AM LangGraph Execution Semantics. | by Christoph Bussler | Medium | Medium

https://chbussler.medium.com/langgraph-execution-semantics-c7dd89900ed4 15/19



       app = Pregel(
           nodes={"node1": node1, "node2": node2},
           channels={
               "a": EphemeralValue(str),
               "b": LastValue(str),
               "c": EphemeralValue(str),
           },
           input_channels=["a"],
           output_channels=["b", "c"],
       )

       app.invoke({"a": "foo"})
       ```

       ```con
       {'b': 'foofoo', 'c': 'foofoofoofoo'}
       ```

 Example: Using a Topic channel
       ```python
       from langgraph.channels import LastValue, EphemeralValue, Topic
       from langgraph.pregel import Pregel, NodeBuilder

       node1 = (
           NodeBuilder().subscribe_only("a")
           .do(lambda x: x + x)
           .write_to("b", "c")
       )

       node2 = (
           NodeBuilder().subscribe_only("b")
           .do(lambda x: x + x)
           .write_to("c")
       )

       app = Pregel(
           nodes={"node1": node1, "node2": node2},
           channels={
               "a": EphemeralValue(str),
               "b": EphemeralValue(str),
               "c": Topic(str, accumulate=True),
           },

10/15/25, 6:47 AM LangGraph Execution Semantics. | by Christoph Bussler | Medium | Medium

https://chbussler.medium.com/langgraph-execution-semantics-c7dd89900ed4 16/19



           input_channels=["a"],
           output_channels=["c"],
       )

       app.invoke({"a": "foo"})
       ```

       ```pycon
       {'c': ['foofoo', 'foofoofoofoo']}
       ```

 Example: Using a BinaryOperatorAggregate channel
       ```python
       from langgraph.channels import EphemeralValue, BinaryOperatorAggregate
       from langgraph.pregel import Pregel, NodeBuilder

       node1 = (
           NodeBuilder().subscribe_only("a")
           .do(lambda x: x + x)
           .write_to("b", "c")
       )

       node2 = (
           NodeBuilder().subscribe_only("b")
           .do(lambda x: x + x)
           .write_to("c")
       )

       def reducer(current, update):
           if current:
               return current + " | " + update
           else:
               return update

       app = Pregel(
           nodes={"node1": node1, "node2": node2},
           channels={
               "a": EphemeralValue(str),
               "b": EphemeralValue(str),

10/15/25, 6:47 AM LangGraph Execution Semantics. | by Christoph Bussler | Medium | Medium

https://chbussler.medium.com/langgraph-execution-semantics-c7dd89900ed4 17/19



               "c": BinaryOperatorAggregate(str, operator=reducer),
           },
           input_channels=["a"],
           output_channels=["c"]
       )

       app.invoke({"a": "foo"})
       ```

       ```con
       {'c': 'foofoo | foofoofoofoo'}
       ```

 Example: Introducing a cycle
 This example demonstrates how to introduce a cycle in the graph, by havin
 a chain write to a channel it subscribes to. Execution will continue
 until a None value is written to the channel.

       ```python
       from langgraph.channels import EphemeralValue
       from langgraph.pregel import Pregel, NodeBuilder, ChannelWriteEntry

       example_node = (
           NodeBuilder().subscribe_only("value")
           .do(lambda x: x + x if len(x) < 10 else None)
           .write_to(ChannelWriteEntry(channel="value", skip_none=True))
       )

       app = Pregel(
           nodes={"example_node": example_node},
           channels={
               "value": EphemeralValue(str),
           },
           input_channels=["value"],
           output_channels=["value"]
       )

       app.invoke({"value": "a"})
       ```

       ```con
       {'value': 'aaaaaaaaaaaaaaaa'}

10/15/25, 6:47 AM LangGraph Execution Semantics. | by Christoph Bussler | Medium | Medium

https://chbussler.medium.com/langgraph-execution-semantics-c7dd89900ed4 18/19



       ```
 """

Written by Christoph Bussler
260 followers · 36 following

www.real-programmer.com

Edit profile

Langgraph Execution Semantics Parallelism Concurrency Process

10/15/25, 6:47 AM LangGraph Execution Semantics. | by Christoph Bussler | Medium | Medium

https://chbussler.medium.com/langgraph-execution-semantics-c7dd89900ed4 19/19

https://medium.com/tag/langgraph?source=post_page-----c7dd89900ed4---------------------------------------
https://medium.com/tag/execution-semantics?source=post_page-----c7dd89900ed4---------------------------------------
https://medium.com/tag/parallelism?source=post_page-----c7dd89900ed4---------------------------------------
https://medium.com/tag/concurrency?source=post_page-----c7dd89900ed4---------------------------------------
https://medium.com/tag/process?source=post_page-----c7dd89900ed4---------------------------------------
https://chbussler.medium.com/?source=post_page---post_author_info--c7dd89900ed4---------------------------------------
https://chbussler.medium.com/?source=post_page---post_author_info--c7dd89900ed4---------------------------------------
https://chbussler.medium.com/?source=post_page---post_author_info--c7dd89900ed4---------------------------------------
https://chbussler.medium.com/?source=post_page---post_author_info--c7dd89900ed4---------------------------------------
https://chbussler.medium.com/followers?source=post_page---post_author_info--c7dd89900ed4---------------------------------------
https://chbussler.medium.com/following?source=post_page---post_author_info--c7dd89900ed4---------------------------------------
http://www.real-programmer.com/
https://medium.com/me/settings/account?source=post_page---post_author_info--c7dd89900ed4---------------------------------------#profileInformation

