10/15/25, 6:47 AM LangGraph Execution Semantics. | by Christoph Bussler | Medium | Medium

LangGraph Execution Semantics

Concurrent branch specification — no parallel branch execution

@ Christoph Bussler 11 min read - Just now

® N e

21

Q

LangGraph supports the definition and the execution of graphs composed of nodes
that are connected by directional dependencies. It is a type-instance system where a
graph type is defined and compiled and the compiled graph (type) can be executed

subsequently as often as required (instances).

LangGraph is used for workflow definitions in context of Al use cases, but it is not

limited to Al in practice; LangGraph can be deployed in non-Al use cases as well.

Two nodes A, B with a dependency from node A to node B means that node A is
executed first, then node B— node B depends on the successful execution of
node A. Conditional dependencies between nodes and splits into concurrent

branches are supported as well.

Graphs have a graph scoped data state that is read and write accessible to the nodes
in a graph so that data can be managed by nodes. The state is shared between the
nodes, and this supports (indirect) data communicated between nodes. Each graph
instance has its own data state instance scoped to the graph instance. The data and

state aspect is not further discussed in the following.

https://chbusslermedium.com/langgraph-execution-semantics-c7dd89900ed4 1/19

https://chbussler.medium.com/?source=post_page---byline--c7dd89900ed4---------------------------------------
https://chbussler.medium.com/?source=post_page---byline--c7dd89900ed4---------------------------------------
https://chbussler.medium.com/?source=post_page---byline--c7dd89900ed4---------------------------------------
https://chbussler.medium.com/?source=post_page---byline--c7dd89900ed4---------------------------------------
https://chbussler.medium.com/?source=post_page---byline--c7dd89900ed4---------------------------------------

10/15/25, 6:47 AM LangGraph Execution Semantics. | by Christoph Bussler | Medium | Medium

Concurrent branches in a graph

LangGraphs can have concurrent branches. An example graph specification is as

follows:

(__start__)

node start

node_parallel_1 node_parallel 2

\ 4 . . v

node_sequential_1 ‘ ‘ node_sequential_2 ‘ node_sequential_3

|

node_end ‘

In this graph there are two concurrent

branches, node_parallel_1 — node_sequential_1 and node_parallel_2 — node_
sequential_2 or node_sequential_ 3. The latter two are conditional: a condition
decides which of node_sequential_2 and node_sequential_3 is executed.

Graphically a conditional branch is depicted as dotted dependencies.

https://chbusslermedium.com/langgraph-execution-semantics-c7dd89900ed4 2/19

10/15/25, 6:47 AM LangGraph Execution Semantics. | by Christoph Bussler | Medium | Medium

The following diagram marks the two concurrent branches.

__start__
—
¥
node_start
/ HH
| RHH
[~ B R = il T g (S R gl SR S 1
! . |
: node_parallel_1 (. node_parallel_2 I
| —~ :
| I |
| ' : I
. S : I v v |
|
: node sequential 1 || 1| node sequential 2 node_sequential_3 I
|
L l

e ——— e ———— - e am == ..________..___+,____

The two branches are concurrent to each other as no dependencies exist from the

nodes of one branch to the nodes of the other branch. The node node_start has two
outgoing dependencies that implement a concurrent split; the node node_end has
three incoming dependencies indicating that node node_end is only executed after
nodes node_sequential_1 and node_sequential_2 Or node_sequential_3 are

completed (node_end it is a join node).

https://chbusslermedium.com/langgraph-execution-semantics-c7dd89900ed4 3/19

10/15/25, 6:47 AM LangGraph Execution Semantics. | by Christoph Bussler | Medium | Medium
I thought initially that the two concurrent branches in the graph type specification
will be processed in parallel during graph instance execution. For example, as soon

as node node_parallel_2 is processed my expectation was that
node node_sequential 2 Or node_sequential_ 3 starts executing immediately, even
if node node_parallel 1 in the other concurrent branch is still executing and not

completed yet.

However, this is not the case: parallel execution of concurrent branches does not take

place in LangGraph.

Execution semantics

During experimentation I realized that the graph is executed based on sets of
activated nodes following the idea behind Pregel (see later in the blog for
references). An activated node is a node where all incoming dependencies are
fulfilled (https://langchain-ai.github.io/langgraph/concepts/pregel/); this is

automatically true for the start node.

The algorithm of node execution is as follows (for all nodes in a single graph
instance): once all activated nodes are determined (first set of activated nodes), those
are executed. Their successful execution might activate further nodes (second set of

activated nodes), until no further nodes are activated; then execution is completed.

For example, if in the case above node node_start is a first set of activated nodes.

When it completes, the second set of activated nodes

is node_parallel_1 and node_parallel_2. This is determined by the set of outgoing
edges from node_start . Once node_start completes, its outgoing edges activate
the nodes to which the edges are pointing to. If node_parallel 1 is completed, it

fulfills the dependency of node node_sequential 1;

https://chbusslermedium.com/langgraph-execution-semantics-c7dd89900ed4 4/19

https://langchain-ai.github.io/langgraph/concepts/pregel/

10/15/25, 6:47 AM LangGraph Execution Semantics. | by Christoph Bussler | Medium | Medium

however, node_sequential_1 is not immediately executed until all currently

activated nodes are completed.

All nodes in the first set of nodes are completed first. Once all nodes in the first set
are completed, the second set of activated nodes is determined: for all nodes in the
graph, which nodes have fulfilled incoming dependencies. Once all activated nodes
are determined, the execution starts with the second set of activated nodes, and all
nodes in that second set are executed. This in turn will create a third set of activated
nodes (which might be empty if all nodes of a graph are completed, or no more

nodes are activated).

In the above example, the second set of activated nodes

is node_parallel_1 and node_parallel 2. Only once both are executed, the next
set is determined and executed. Even if the dependencies of node_sequential 1 are

fulfilled (only one in the above case), it will not be executed immediately.

If conditional branching is present following a node like node _parallel 2, itis
evaluated after the execution of the node set that node_parallel_2 is part of. The

outcome of the conditional branch is one or more activated nodes that will belong to

the next set of activated nodes.

Execution of a sample graph

In the above example, node node_start is the start node and the first set of activated

nodes (only one node is in the initial set — in principle more than one start node can

exist in a graph).

In the following figures the dotted rectangle denotes the activated nodes.

https://chbusslermedium.com/langgraph-execution-semantics-c7dd89900ed4 5/19

10/15/25, 6:47 AM LangGraph Execution Semantics. | by Christoph Bussler | Medium | Medium

[. ~

node_parallel_1 node_parallel_2
—
|
k v v
node sequential 1 node sequential 2 node sequential 3
| [l
node_end

|

|
F. ’_*__\
(_—end__

Once node node_start is completed, the next set of activated nodes is determined:
this is node node_parallel_1 and node node_parallel_2.

Node node_parallel_1 and node node_parallel_2 form the second set of activated
nodes, and therefore node node_parallel_1 and node node_parallel_2 are

executed.

https://chbusslermedium.com/langgraph-execution-semantics-c7dd89900ed4 6/19

10/15/25, 6:47 AM LangGraph Execution Semantics. | by Christoph Bussler | Medium | Medium

Only after node node _parallel_1 and node node_parallel 2 are completed, the
next, third, set of activated nodes is determined: node node_sequential_1 and either
node node_sequential 2 or node_sequential 3, depending on the outcome of the

branching condition.

https://chbussler.medium.com/langgraph-execution-semantics-c7dd89900ed4 7/19

10/15/25, 6:47 AM LangGraph Execution Semantics. | by Christoph Bussler | Medium | Medium

__start__
%
v
node_start
/ T
~
v v
node_parallel_1 node_parallel_2
T 3 .
i ¥ ¥
‘ node sequential 1 node sequential 2 node sequential 3
| [[|
node_end
[
(G

Once the third set is completed (aka, node node_sequential 1 and

either node_sequential_2 or node_sequential 3), the last (fourth) set of activated
nodes is determined and executed (only containing the node node_end).

Node node_end is the final node and after node node_end ’s execution the execution

of the entire graph is completed.

https://chbusslermedium.com/langgraph-execution-semantics-c7dd89900ed4 8/19

10/15/25, 6:47 AM LangGraph Execution Semantics. | by Christoph Bussler | Medium | Medium

__start__

.

node_start

—

¥ —— _—

node_parallel_1 node_parallel_2

h J . h J h J

node sequential 1 node sequential 2 node sequential 3

Observation: no branch parallelism during execution

Once the execution of node node_parallel 1 is completed,

node node_sequential 1 is not immediately executed next as it is not in the same
set of activated nodes as node node_parallel_1. Instead, the execution of

node node_sequential 1 only starts once the previous set of activated nodes that

contains node node_parallel_1 (its predecessor) has been completed.

Using the graphical representation from above, the dotted rectangle represents a set
of activated nodes, and the dashed rectangles represent concurrent branches. All

nodes within a dotted rectangle (set of activated nodes) are completely executed

https://chbusslermedium.com/langgraph-execution-semantics-c7dd89900ed4 9/19

10/15/25, 6:47 AM LangGraph Execution Semantics. | by Christoph Bussler | Medium | Medium
before the next set of activated nodes starts executing even though nodes might be in

concurrent branches.

__start__
- —
v
node_start
.._,..—-"’—'_‘/'—" B
F""/’f B
'l BN IREECE R CEC v ww aes F gL T R T (T T = T 1:
X 1| l:
0 node_parallel_1 (- node_parallel_2 1
| :
1 : I:
I I| I-:
B L ; : ' L : L |
|
: node sequential 1 || 1| node sequential 2 node_sequential_3 I
T — I____ __________ _+,____I
— -
-_\-_\-_-_\-‘"‘-'-\—..._____ J _.-r"""f;
B e
node_end
A
F JJ_“-
| _end

As is visible graphically, even though in case of the two concurrent branches the
nodes node_sequential_1 and node_sequential_2 Or node_sequential 3 could
immediately start execution based on their dependencies alone, the LangGraph

execution does not implement its execution semantics this way.

Formal LangGraph execution semantics based on Pregel

https://chbusslermedium.com/langgraph-execution-semantics-c7dd89900ed4 10/19

10/15/25, 6:47 AM LangGraph Execution Semantics. | by Christoph Bussler | Medium | Medium
LangGraph execution (https://langchain-ai.github.io/langgraph/concepts/pregel/) is
implemented based on the Pregel algorithm (https://research.google/pubs/pregel-a-

system-for-large-scale-graph-processing/).

The Python classes functions implementing the LangGraph semantics can be found

here: https://langchain-ai.github.io/langgraph/reference/pregel/.

The implemented semantics is straight forward and clear based on the Pregel
algorithm. It does not restrict the expressiveness of graph structures (graph types).
While not discussed in this blog, this also simplifies the data state coordination that
would be more complex in parallel branch execution as different combinations of
access would have to be guarded and to be coordinated in order to implement state

correctness.

An article describing the semantics in more detail is

message-passing-and-super-steps-0e101e620£10.

Parallelism of concurrent branches

Is it possible to have parallel execution of concurrent branches?

Nodes in a graph instance can call any function. A function could be calling another
independent graph instance of a different graph type. Since this is independent of the
node’s graph, that independent graph is being executed separately. Two concurrent
nodes can each call an independent graph, and that provides a higher degree of
parallelism as each of the independent graphs is executed independently, aka, in

parallel.

https://chbusslermedium.com/langgraph-execution-semantics-c7dd89900ed4 11/19

https://langchain-ai.github.io/langgraph/concepts/pregel/
https://research.google/pubs/pregel-a-system-for-large-scale-graph-processing/
https://research.google/pubs/pregel-a-system-for-large-scale-graph-processing/
https://langchain-ai.github.io/langgraph/reference/pregel/
https://medium.com/@maksymilian.pilzys/langgraph-transactions-pregel-message-passing-and-super-steps-0e101e620f10
https://medium.com/@maksymilian.pilzys/langgraph-transactions-pregel-message-passing-and-super-steps-0e101e620f10

10/15/25, 6:47 AM LangGraph Execution Semantics. | by Christoph Bussler | Medium | Medium
However, the complexity of state synchronization increases significantly if that has
to take place across independent graph instances. In that case the execution is
parallel as the execution of the node implementation creates an independent instance.
This changes the model to a federation where each of the graph instances has its own
state and no consistency across the various involved graphs by the LangGraph
execution semantics. Any data coordination and consistency must then be
implemented independent of the graph instances, and independent of the assurances

of the LangGraph implementation.

A trade off discussion between the benefit of parallel execution of independent graph
instances and the added complexity of state management has to carefully take place

— at least I would suggest that strongly.

Summary

While LangGraph supports graphs with concurrent branches of nodes, the execution
of nodes in concurrent branches is not independent of each other, aka, parallel.
Instead, LangGraph’s execution semantics is based on the graph-global execution of
activated node sets following the Pregel semantics, one node set after the next node

set, which does not take concurrent branches into consideration.

Appendix: code documentation

The following shows the code documentation from the class Pregel in this GitHub
location: https://github.com/langchain-

ai/langgraph/blob/main/libs/langgraph/langgraph/pregel/main.py.
Appendix: code documentation
The following shows the code documentation from the class Pregel in this GitHub

class Pregel(

https://chbusslermedium.com/langgraph-execution-semantics-c7dd89900ed4 12/19

https://github.com/langchain-ai/langgraph/blob/main/libs/langgraph/langgraph/pregel/main.py
https://github.com/langchain-ai/langgraph/blob/main/libs/langgraph/langgraph/pregel/main.py

10/15/25, 6:47 AM LangGraph Execution Semantics. | by Christoph Bussler | Medium | Medium
PregelProtocol[StateT, ContextT, InputT, OutputT],
Generic[StateT, ContextT, InputT, OutputT],

Pregel manages the runtime behavior for LangGraph applications.

Overview

Pregel combines [**actors**](https://en.wikipedia.org/wiki/Actor_model)
and **channels** into a single application.

Actors read data from channels and write data to channels.

Pregel organizes the execution of the application into multiple steps,
following the **Pregel Algorithm**/**Bulk Synchronous Parallel** model.

Each step consists of three phases:

- **Plan**: Determine which **actors** to execute in this step. For example,
in the first step, select the **actors** that subscribe to the special
input channels; in subsequent steps,
select the **actors** that subscribe to channels updated in the previous

- **Execution**: Execute all selected **actors** in parallel,
until all complete, or one fails, or a timeout is reached. During this
phase, channel updates are invisible to actors until the next step.

- **Update**: Update the channels with the values written by the **actors**
in this step.

Repeat until no **actors** are selected for execution, or a maximum number of
steps is reached.

Actors

An **actor** is a "PregelNode .

It subscribes to channels, reads data from them, and writes data to them.
It can be thought of as an **actor** in the Pregel algorithm.
"PregelNodes” implement LangChain's

Runnable interface.

Channels

Channels are used to communicate between actors (PregelNodes’).
Each channel has a value type, an update type, and an update function - whicl
https://chbusslermedium.com/langgraph-execution-semantics-c7dd89900ed4 13/19

10/15/25, 6:47 AM

LangGraph Execution Semantics. | by Christoph Bussler | Medium | Medium
takes a sequence of updates and
modifies the stored value. Channels can be used to send data from one chain 1
another, or to send data from a chain to itself in a future step. LangGraph
provides a number of built-in channels:

Basic channels: LastValue and Topic

- “Lastvalue : The default channel, stores the last value sent to the channe’
useful for input and output values, or for sending data from one step to

- "Topic : A configurable PubSub Topic, useful for sending multiple values
between *actors*, or for accumulating output. Can be configured to dedupl:
values, and/or to accumulate values over the course of multiple steps.

Advanced channels: Context and BinaryOperatorAggregate

- “Context’: exposes the value of a context manager, managing its lifecycle.
Useful for accessing external resources that require setup and/or teardown.
“client = Context(httpx.Client)"

- "BinaryOperatorAggregate : stores a persistent value, updated by applying

a binary operator to the current value and each update
sent to the channel, useful for computing aggregates over multiple steps.
“total = BinaryOperatorAggregate(int, operator.add)"

Examples

Most users will interact with Pregel via a
[StateGraph (Graph API)][langgraph.graph.StateGraph] or via an
[entrypoint (Functional API)][langgraph.func.entrypoint].

However, for **advanced** use cases, Pregel can be used directly. If you're
not sure whether you need to use Pregel directly, then the answer is probably
- you should use the Graph API or Functional API instead. These are higher - l¢
interfaces that will compile down to Pregel under the hood.

Here are some examples to give you a sense of how it works:

Example: Single node application
““python
from langgraph.channels import EphemeralValue
from langgraph.pregel import Pregel, NodeBuilder

https://chbusslermedium.com/langgraph-execution-semantics-c7dd89900ed4

14/19

10/15/25, 6:47 AM LangGraph Execution Semantics. | by Christoph Bussler | Medium | Medium

nodel = (
NodeBuilder().subscribe_only("a")
.do(lambda x: x + X)
.write_to("b")

app = Pregel(
nodes={"nodel": nodel},
channels={
"a": Ephemeralvalue(str),
"b": Ephemeralvalue(str),
Iy
input_channels=["a"],
output_channels=["b"],

app.invoke({"a": "foo"})

“con
{'b': 'foofoo'}

Example: Using multiple nodes and multiple output channels
" “python
from langgraph.channels import LastValue, Ephemeralvalue
from langgraph.pregel import Pregel, NodeBuilder

nodel = (
NodeBuilder () .subscribe_only("a")
.do(lambda x: x + X)
write_to("b")

)

node2 = (
NodeBuilder().subscribe_to("b")
.do(lambda x: x["b"] + x["b"])
write_to("c")

)

https://chbusslermedium.com/langgraph-execution-semantics-c7dd89900ed4 15/19

10/15/25, 6:47 AM

LangGraph Execution Semantics. | by Christoph Bussler | Medium | Medium
app = Pregel(

nodes={"nodel": nodel, "node2": node2},
channels={

"a": Ephemeralvalue(str),

"b": LastValue(str),

"c": Ephemeralvalue(str),
3
input_channels=["a"],
output_channels=["b", "c"],

app.invoke({"a": "foo"})

“Tcon
{'b': 'foofoo', 'c': 'foofoofoofoo'}

Example: Using a Topic channel
*python
from langgraph.channels import LastValue, Ephemeralvalue, Topic
from langgraph.pregel import Pregel, NodeBuilder

nodel = (
NodeBuilder().subscribe_only("a")
.do(lambda x: x + Xx)
.write_to("b", "c")

node2 = (
NodeBuilder () .subscribe_only("b")
.do(lambda x: x + X)
write_to("c")

app = Pregel(
nodes={"nodel": nodel, "node2": node2},
channels={
"a": Ephemeralvalue(str),
"b": Ephemeralvalue(str),
"c": Topic(str, accumulate=True),

iy

https://chbusslermedium.com/langgraph-execution-semantics-c7dd89900ed4

16/19

10/15/25, 6:47 AM

LangGraph Execution Semantics. | by Christoph Bussler | Medium | Medium

input_channels=["a"],
output_channels=["c"],

app.invoke({"a": "foo"})

" “pycon
{'c': ['foofoo', 'foofoofoofoo']}

Example: Using a BinaryOperatorAggregate channel

" python

from langgraph.channels import EphemeralValue, BinaryOperatorAggregate

from langgraph.pregel import Pregel, NodeBuilder

nodel = (
NodeBuilder().subscribe_only("a")
.do(lambda x: x + X)
write_to("b", "c")

)

node2 = (
NodeBuilder().subscribe_only("b")
.do(lambda x: x + X)
write_to("c")

)

def reducer(current, update):
if current:
return current + " | " + update
else:
return update

app = Pregel(
nodes={"nodel": nodel, "node2": node2},
channels={
"a": Ephemeralvalue(str),
"b": Ephemeralvalue(str),

https://chbusslermedium.com/langgraph-execution-semantics-c7dd89900ed4

17/19

10/15/25, 6:47 AM

LangGraph Execution Semantics. | by Christoph Bussler | Medium | Medium
"c": BinaryOperatorAggregate(str, operator=reducer),

3

input_channels=["a"],
output_channels=["c"]

app.invoke({"a": "foo"})

con
{'c': 'foofoo | foofoofoofoo'}

Example: Introducing a cycle

This example demonstrates how to introduce a cycle in the graph, by havir
a chain write to a channel it subscribes to. Execution will continue
until a None value is written to the channel.

*python
from langgraph.channels import EphemeralValue
from langgraph.pregel import Pregel, NodeBuilder, ChannelWriteEntry

example_node = (
NodeBuilder().subscribe_only("value")
.do(lambda x: x + x if len(x) < 10 else None)
.write_to(ChannelWriteEntry(channel="value", skip_none=True))

app = Pregel(
nodes={"example_node": example_node},
channels={
"value": Ephemeralvalue(str),
3
input_channels=["value"],
output_channels=["value"]

)

app.invoke({"value": "a"})
“Tcon

{'value': 'aaaaaaaaaaaaaaaa'}

https://chbusslermedium.com/langgraph-execution-semantics-c7dd89900ed4

18/19

10/15/25, 6:47 AM LangGraph Execution Semantics. | by Christoph Bussler | Medium | Medium

Langgraph Execution Semantics Parallelism

@ Written by Christoph Bussler

260 followers - 36 following

www.real-programmer.com

https://chbusslermedium.com/langgraph-execution-semantics-c7dd89900ed4

Concurrency

Process

D

19/19

https://medium.com/tag/langgraph?source=post_page-----c7dd89900ed4---------------------------------------
https://medium.com/tag/execution-semantics?source=post_page-----c7dd89900ed4---------------------------------------
https://medium.com/tag/parallelism?source=post_page-----c7dd89900ed4---------------------------------------
https://medium.com/tag/concurrency?source=post_page-----c7dd89900ed4---------------------------------------
https://medium.com/tag/process?source=post_page-----c7dd89900ed4---------------------------------------
https://chbussler.medium.com/?source=post_page---post_author_info--c7dd89900ed4---------------------------------------
https://chbussler.medium.com/?source=post_page---post_author_info--c7dd89900ed4---------------------------------------
https://chbussler.medium.com/?source=post_page---post_author_info--c7dd89900ed4---------------------------------------
https://chbussler.medium.com/?source=post_page---post_author_info--c7dd89900ed4---------------------------------------
https://chbussler.medium.com/followers?source=post_page---post_author_info--c7dd89900ed4---------------------------------------
https://chbussler.medium.com/following?source=post_page---post_author_info--c7dd89900ed4---------------------------------------
http://www.real-programmer.com/
https://medium.com/me/settings/account?source=post_page---post_author_info--c7dd89900ed4---------------------------------------#profileInformation

